EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-D4966 2012ASTM D4966 - 12e1Standard Test Method for Abrasion Resistance of Textile Fabrics (Martindale Abrasion Tester Method)Active Standard ASTM D4966 | Developed by Subcommittee: D13.60 Book of Standards Volume: 07.02 ASTM D4966Significance and Use 5.1 Acceptance Testing this test method is not considered satisfactory for acceptance testing of commercial shipments of fabric. The between-laboratory precision of this test method is poor and, because of the nature of abrasion testing itself, technicians frequently fail to obtain results in agreement on the same type of testing instrument, both within and between laboratories. Although this test method is not recommended for acceptance testing, it is useful because it is used widely, especially outside the United States. 5.1.1 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens then should be assigned randomly in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Students t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in light of the known bias. 5.2 The resistance to abrasion also is affected greatly by the conditions of the tests, such as the nature of abradant; variable action of the abradant over the area of specimen abraded, the tension on the specimen, the pressure between the specimen and abradant, and the dimensional changes in the specimen. 5.3 Abrasion tests are all subject to variation due to changes in the abradant during specific tests. The abradant must be changed accordingly at frequent intervals or checked periodically against a standard. With disposable abradants, the abradant is used only once or changed after limited use. With permanent abradants that use hardened metal or equivalent surfaces, it is assumed that the abradant will not change appreciably in a specific series of tests, but obviously similar abradants used in different laboratories will not likely change at the same rate due to differences in usage. Permanent abradants also may change due to pick up of finishing or other material from test fabrics and must accordingly be cleaned at frequent intervals. The measurement of the relative amount of abrasion also may be affected by the method of evaluation and may be influenced by the judgment of the operator. 5.4 The resistance of textile materials to abrasion as measured on a testing machine in the laboratory is generally only one of several factors contributing to wear performance or durability as experienced in the actual use of the material. While abrasion resistance (often stated in terms of the number of cycles on a specified machine, using a specified technique to produce a specified degree or amount of abrasion) and durability (defined as the ability to withstand deterioration or wearing out in use, including the effects of abrasion) frequently are related, the relationship varies with different end uses, and different factors may be necessary in any calculation of predicted durability from specific abrasion data. 5.4.1 Laboratory tests may be reliable as an indication of relative end-use performance in cases where the difference in abrasion resistance of various materials is large, but they should not be relied upon where differences in laboratory test findings are small. In general, they should not be relied upon for prediction of actual wear-life in specific-end uses unless there are data showing the specific relationship between laboratory abrasion tests and actual wear in the intended end-use. 5.5 These general observations apply to all types of fabrics, including woven, nonwoven, and knit apparel fabrics, household fabrics, industrial fabrics, and floor coverings. It is not surprising, therefore, to find that there are many different types of abrasion testing machines, abradants, testing conditions, testing procedures, methods of evaluation of abrasion resistance, and interpretation of results. 5.6 All the test methods and instruments so far developed for abrasion resistance may show a high degree of variability in results obtained by different operators and in different laboratories; however, they represent the methods now most widely in use. 5.7 Since there is a definite need for measuring the relative resistance to abrasion, standardized test methods are desirable and useful and may clarify the problem and lessen the confusion. 1. Scope 1.1 This test method covers the determination of the abrasion resistance of textile fabrics using the Martindale abrasion tester. Fabrics of all types may be tested by this method but difficulties may arise with fabrics with a pile depth greater than 0.08 in. (2 mm). 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
Note 1 For other current test methods of testing the abrasion resistance of textiles refer to Test Methods D3884 ,
D3885 , D3886 , D4157 , D4158 , and AATCC Test Method?93 .
ASTM Standards D123 Terminology Relating to Textiles D1776 Practice for Conditioning and Testing Textiles D3884 Test Method for Abrasion Resistance of Textile Fabrics (Rotary Platform, Double-Head Method) D3885 Test Method for Abrasion Resistance of Textile Fabrics (Flexing and Abrasion Method) D3886 Test Method for Abrasion Resistance of Textile Fabrics (Inflated Diaphragm Apparatus) D4157 Test Method for Abrasion Resistance of Textile Fabrics (Oscillatory Cylinder Method) D4158 Guide for Abrasion Resistance of Textile Fabrics (Uniform Abrasion) D4850 Terminology Relating to Fabrics and Fabric Test Methods AATCC Methods and Procedures Test Method 93 Abrasion Resistance of Fabrics: Accelerator MethodKeywords abrasion; knit fabric; woven fabric; ICS Code ICS Number Code 59.080.30 (Textile fabrics) DOI: 10.1520/D4966-12E01 ASTM International is a member of CrossRef. ASTM D4966This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|