Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
EDITION
to
PUBLISHER
(1)
(353)
(628)
(599)
(58)
(234)
(1020)
(704)
(2194)
(117)
(95826)
(63)
(601)
(131)
(33)
(24)
(20)
(96970)
(17)
(1)
(374)
(325)
(7302)
(246)
(21)
(7)
(1685)
(18)
(19)
(28)
(4)
 
(6)
(7)
(115)
(1)
(3)
(57)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(34)
(13)
(61)
(24)
(22)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(33)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ASTM
    E2108-05 Standard Practice for Calibration of the Electron Binding-Energy Scale of an X-Ray Photoelectron Spectrometer
    Edition: 2005
    $144.00
    Unlimited Users per year

Description of ASTM-E2108 2005

ASTM E2108-05

Historical Standard: ASTM E2108-05 Standard Practice for Calibration of the Electron Binding-Energy Scale of an X-Ray Photoelectron Spectrometer

SUPERSEDED (see Active link, below)




ASTM E2108

1. Scope

1.1 This practice describes a procedure for calibrating the electron binding-energy (BE) scale of an X-ray photoelectron spectrometer that is to be used for surface analysis with unmonochromated aluminum or magnesium K X-rays or monochromated aluminum K X rays.

1.2 It is recommended that the BE scale be calibrated after the instrument is installed or modified in any substantive way. Also, it is recommended that the instrumental BE scale be checked, and if necessary, recalibrated at intervals chosen to ensure that BE measurements are statistically unlikely to be made with greater uncertainty than a tolerance limit, specified by the analyst, based on the instrumental stability and the analyst's needs. Information is provided by which an analyst can select an appropriate tolerance limit for the BE measurements and the frequency of calibration checks.

1.3 This practice is based on the assumption that the BE scale of the spectrometer is sufficiently close to linear that the BE scale can be calibrated by measurements of reference photoelectron lines made near the extremes of the working BE scale. In most commercial instruments, X-ray sources with aluminum or magnesium anodes are employed and BEs are typically measured over the 0-1000 eV range. This practice can be used for the BE range from 0 eV to 1040 eV.

1.4 The assumption that the BE scale is linear is checked by a measurement made with a reference photoelectron line or Auger-electron line that appears at an intermediate position. A single check is a necessary but not sufficient condition for establishing linearity of the BE scale. Additional checks can be made with specified reference lines on instruments equipped with magnesium or unmonochromated aluminum X-ray sources, with secondary BE standards, or by following the procedures of the instrument manufacturer. Deviations from BE-scale linearity can occur because of mechanical misalignments, excessive magnetic fields in the region of the analyzer, or imperfections or malfunctions in the power supplies. This practice does not check for, nor identify, problems of this type.

1.5 After an initial check of the BE-scale linearity and measurements of the repeatability standard deviation for the main calibration lines for a particular instrument, a simplified procedure is given for routine checks of the calibration at subsequent times.

1.6 This practice is recommended for use with X-ray photoelectron spectrometers operated in the constant-pass-energy or fixed-analyzer-transmission mode and for which the pass energy is less than 200 eV; otherwise, depending on the configuration of the instrument, a relativistic equation could be needed for the calibration equation. The practice should not be used for instruments operated in the constant-retardation-ratio mode at retardation ratios less than 10, for instruments with an energy resolution worse than 1.5 eV, or in applications for which BE measurements are desired with tolerance limits of 0.03 eV or less.

1.7 On instruments equipped with a monochromated aluminum K X-ray source, a measurement of the position of a specified Auger-electron line can be used, if desired, to determine the average energy of the X rays incident on the specimen. This information is needed for the determination of modified Auger parameters.

This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.


2. Referenced Documents (purchase separately) The documents listed below are referenced within the subject standard but are not provided as part of the standard.

ASTM Standards

E456 Terminology Relating to Quality and Statistics

E673 Terminology Relating to Surface Analysis

E902 Practice for Checking the Operating Characteristics of X-Ray Photoelectron Spectrometers

E1016 Guide for Literature Describing Properties of Electrostatic Electron Spectrometers

E1078 Guide for Specimen Preparation and Mounting in Surface Analysis

E1523 Guide to Charge Control and Charge Referencing Techniques in X-Ray Photoelectron Spectroscopy


Keywords

binding energy; calibration; spectrometer; surface analysis; X-ray photoelectron spectroscopy (XPS); BE (biinding-energy) scale; Calibration--spectrochemical analysis instrumentation; Electron binding-energy (BE) scale; Least squares calculation; Linear calibration function; X-ray photoelectron spectroscopy (XPS);


ICS Code

ICS Number Code 71.040.50 (Physicochemical methods of analysis)


DOI: 10.1520/E2108-05

ASTM International is a member of CrossRef.




The following editions for this book are also available...

This book also exists in the following packages...

Year Publisher Title Annual Price
VAR
ASTM
[+] $906.36 Buy
VAR
ASTM
[+] $5,463.72 Buy

Subscription Information

MADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

Some features of MADCAD.com ASTM Standards Subscriptions are:

- Online access: With MADCAD.com’ s web based subscription service no downloads or installations are required. Access ASTM Standards from any browser on your computer, tablet or smart phone.

- Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.

 

For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.

 

About ASTM

ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide.

GROUPS