|
EDITION
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of ASTM-F1894 2011ASTM F1894-98-Reapproved2011Withdrawn Standard: Test Method for Quantifying Tungsten Silicide Semiconductor Process Films for Composition and Thickness (Withdrawn 2020)ASTM F1894Scope 1.1 This test method covers the quantitative determination of tungsten and silicon concentrations in tungsten/silicon (WSix) semiconductor process films using Rutherford Backscattering Spectrometry (RBS). (1) This test method also covers the detection and quantification of impurities in the mass range from phosphorus Å (31 atomic mass units (amu) to antimony (122 amu). 1.2 This test method can be used for tungsten silicide films prepared by any deposition or annealing processes, or both. The film must be a uniform film with an areal coverage greater than the incident ion beam (∼2.5 mm). 1.3 This test method accurately measures the following film properties: silicon/tungsten ratio and variations with depth, tungsten depth profile throughout film, WSix film thickness, argon concentrations (if present), presence of oxide on surface of WSix films, and transition metal impurities to detection limits of 1×1014 atoms/cm2. 1.4 This test method can detect absolute differences in silicon and tungsten concentrations of ±3 and ±1 atomic percent, respectively, measured from different samples in separate analyses. Relative variations in the tungsten concentration in depth can be detected to ±0.2 atomic percent with a depth resolution of ±70Å. 1.5 This test method supports and assists in qualifying WSix films by electrical resistivity techniques. 1.6 This test method can be performed for WSix films deposited on conducting or insulating substrates. 1.7 This test method is useful for WSix films between 20 and 400 nm with an areal coverage of greater than 1 by 1 mm2. 1.8 This test method is non-destructive to the film to the extent of sputtering. 1.9 A statistical process control (SPC) of WSix films has been monitored since 1993 with reproducibility to ±4 %. 1.10 This test method produces accurate film thicknesses by modeling the film density of the WSix film as WSi2 (hexagonal) plus excess elemental Si2. The measured film thickness is a lower limit to the actual film thickness with an accuracy less than 10 % compared to SEM cross-section measurements (see 13.4). 1.11 This test method can be used to analyze films on whole wafers up to 300 mm without breaking the wafers. The sites that can be analyzed may be restricted to concentric rings near the wafer edges for 200-mm and 300-mm wafers, depending on system capabilities. 1.12 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
1.13 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish
appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. The reader is referenced to Section 8 of this test method for
references to some of the regulatory, radiation, and safety considerations involved with accelerator operation. Keywords analysis of tungsten silicide; backscattering analysis; composition; metallization films; quantitative analysis; RBS; WSix; Backscattering analysis; Composition analysis--semiconductor applications; Density--electronic applications; Metal electronic components/devices; Quantitative analysis/measurement; Rutherford backscattering spectrometry; Tungsten silicide (WSix) ICS Code ICS Number Code 29.045 (Semiconducting materials) DOI: 10.1520/F1894-98R11 This book also exists in the following packages...Subscription InformationMADCAD.com ASTM Standards subscriptions are annual and access is unlimited concurrency based (number of people that can access the subscription at any given time) from single office location. For pricing on multiple office location ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
Some features of MADCAD.com ASTM Standards Subscriptions are: - Immediate Access: As soon as the transaction is completed, your ASTM Standards Subscription will be ready for access.
For any further information on MADCAD.com ASTM Standards Subscriptions, please contact us at info@madcad.com or +1 800.798.9296.
About ASTMASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence. ASTM’s leadership in international standards development is driven by the contributions of its members: more than 30,000 of the world’s top technical experts and business professionals representing 150 countries. Working in an open and transparent process and using ASTM’s advanced electronic infrastructure, ASTM members deliver the test methods, specifications, guides, and practices that support industries and governments worldwide. |
GROUPS
|