EDITION
PUBLISHER
CONTENT TYPE
Act
Admin Code
Announcements
Bill
Book
CADD File
CAN
CEU
Charter
Checklist
City Code
Code
Commentary
Comprehensive Plan
Conference Paper
County Code
Course
DHS Documents
Document
Errata
Executive Regulation
Federal Guideline
Firm Content
Guideline
Handbook
Interpretation
Journal
Land Use and Development
Law
Legislative Rule
Local Amendment
Local Code
Local Document
Local Regulation
Local Standards
Manual
Model Code
Model Standard
Notice
Ordinance
Other
Paperback
PASS
Periodicals
PIN
Plan
Policy
Product
Product - Data Sheet
Program
Provisions
Requirements
Revisions
Rules & Regulations
Standards
State Amendment
State Code
State Manual
State Plan
State Standards
Statute
Study Guide
Supplement
Sustainability
Technical Bulletin
All
|
Description of PD IEC/TS 60479-1:2005+A1:2016 2016For a given current path through the human body, the danger to persons depends mainly on the magnitude and duration of the current flow. However, the time/current zones specified in the following clauses are, in many cases, not directly applicable in practice for designing measures of protection against electrical shock. The necessary criterion is the admissible limit of touch voltage (i.e. the product of the current through the body called touch current and the body impedance) as a function of time. The relationship between current and voltage is not linear because the impedance of the human body varies with the touch voltage, and data on this relationship is therefore required. The different parts of the human body (such as the skin, blood, muscles, other tissues and joints) present to the electric current a certain impedance composed of resistive and capacitive components. The values of body impedance depend on a number of factors and, in particular, on current path, on touch voltage, duration of current flow, frequency, degree of moisture of the skin, surface area of contact, pressure exerted and temperature. The impedance values indicated in this technical specification result from a close examination of the experimental results available from measurements carried out principally on corpses and on some living persons. Knowledge of the effects of alternating current is primarily based on the findings related to the effects of current at frequencies of 50 Hz or 60 Hz which are the most common in electrical installations. The values given are, however, deemed applicable over the frequency range from 15 Hz to 100 Hz, threshold values at the limits of this range being higher than those at 50 Hz or 60 Hz. Principally the risk of ventricular fibrillation is considered to be the main mechanism of death of fatal electrical accidents. Accidents with direct current are much less frequent than would be expected from the number of d.c. applications, and fatal electrical accidents occur only under very unfavourable conditions, for example, in mines. This is partly due to the fact that with direct current, the letgo of parts gripped is less difficult and that for shock durations longer than the period of the cardiac cycle, the threshold of ventricular fibrillation is considerably higher than for alternating current. NOTE The IEC 60479 series contains information about body impedance and body current thresholds for various physiological effects. This information can be combined to derive estimates of a.c. and d.c. touch voltage thresholds for certain body current pathways, contact moisture conditions, and skin contact areas. Information about touch voltage thresholds for physiological effects is contained in IEC 61201 .
About BSIBSI Group, also known as the British Standards Institution is the national standards body of the United Kingdom. BSI produces technical standards on a wide range of products and services and also supplies certification and standards-related services to businesses. |
GROUPS
|