Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
EDITION
to
PUBLISHER
(1)
(353)
(651)
(599)
(58)
(290)
(1053)
(728)
(2285)
(117)
(97896)
(58)
(641)
(137)
(35)
(28)
(20)
(99791)
(18)
(1)
(396)
(328)
(10763)
(7368)
(264)
(21)
(24378)
(910)
(7)
(1722)
(23)
(19)
(28)
(4)
 
(6)
(7)
(128)
(1)
(3)
(58)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(36)
(13)
(71)
(24)
(25)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(34)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ISO
    ISO 15310:1999 Fibre-reinforced plastic composites -- Determination of the in-plane shear modulus by the plate twist method
    Edition: 1999
    $192.38
    / user per year

Content Description

This International Standard specifies a method for determining the in-plane shear modulus (G12) of fibre-reinforced plastic composites using a standard plate specimen. When applied to isotropic materials, the shear modulus measured is independent of direction.

The method is used to determine the shear modulus of the test specimens but not to determine the shear strength. It applies to a plate supported on two points on one diagonal and loaded on the other diagonal by the simultaneous movement of two loading points attached to a cross-beam.

The method is suitable for use with fibre-reinforced plastic composites with both thermoset and thermoplastic matrices.

Due to the shear deformation being applied under flexural conditions, for laminated materials with different fibre formats and/or different orientations, the layers of material must be well distributed across the section so that it is approximately “homogeneous” in the through-thickness direction.

The principal material axes, if present, must be orientated normal to the plate edges (see 3.8).

For material fabricated using unidirectional plies, the shear modulus obtained using a multidirectional specimen (i.e. 0°/90°/ ±45°) is not the same as that obtained for unidirectional or cross-ply (0°/90°) material.

The method is performed using specimens which may be moulded to the chosen dimensions, machined from test plates or machined from flat areas of products.

The method specifies preferred dimensions for the specimen. Tests which are carried out on specimens of other dimensions, or on specimens which are prepared under different conditions, may produce results which are not comparable. Other factors, such as the speed of testing and the conditioning of the specimens, can influence the results. Consequently, when comparative data are required, these factors must be carefully controlled and recorded.



About ISO

ISO, the International Organization for Standardization, brings global experts together to agree on the best way of doing things – for anything from making a product to managing a process. As one of the oldest non-governmental international organizations, ISO has enabled trade and cooperation between people and companies all over the world since 1946. The International Standards published by ISO serve to make lives easier, safer and better.

GROUPS