Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
EDITION
to
PUBLISHER
(1)
(353)
(641)
(599)
(58)
(290)
(1042)
(715)
(2249)
(117)
(97542)
(58)
(613)
(132)
(33)
(28)
(20)
(99791)
(18)
(1)
(396)
(328)
(7369)
(252)
(21)
(24907)
(849)
(7)
(1700)
(23)
(19)
(28)
(4)
 
(6)
(7)
(128)
(1)
(3)
(58)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(36)
(13)
(71)
(24)
(25)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(34)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ISO
    ISO 26304:2025 Welding consumables - Solid wire electrodes, tubular cored electrodes and electrode-flux combinations for submerged arc welding of high strength steels - Classification
    Edition: 2025
    $344.69
    / user per year

Content Description

This document specifies requirements for classification of solid wire electrodes, tubular cored electrodes, and electrode-flux combinations (the all-weld metal deposits) in the as-welded condition and in the post-weld heat-treated condition for submerged arc welding of high strength steels with a minimum yield strength greater than 500 MPa or a minimum tensile strength greater than 570 MPa. One flux can be tested and classified with different electrodes. One electrode can be tested and classified with different fluxes. The solid wire electrode is also classified separately based on its chemical composition.

This document is a combined specification providing for classification utilizing a system based on the yield strength and average impact energy of 47 J for the all-weld metal, or utilizing a system based on the tensile strength and average impact energy of 27 J for the all-weld metal.

a)       Clauses, subclauses and tables which carry the suffix “system A” are applicable only to solid wire electrodes, tubular cored electrodes and the all-weld metal deposits classified to the system based on the yield strength and the average impact energy of 47 J for the all-weld metal obtained with electrode-flux combinations in accordance with this document.

b)       Clauses, subclauses and tables which carry the suffix “system B” are applicable only to solid wire electrodes, tubular cored electrodes and the all-weld metal deposits classified to the system based on the tensile strength and the average impact energy of 27 J for the all-weld metal obtained with electrode-flux combinations in accordance with this document.

c)        Clauses, subclauses and tables which do not have either the suffix “system A” or “system B” are applicable to all solid wire electrodes, tubular cored electrodes and electrode-flux combinations classified in accordance with this document.

For comparison purposes, some tables include requirements for electrodes classified in accordance with both systems, placing individual electrodes from the two systems, which are similar in composition and properties, on adjacent lines in the particular table. In a particular line of the table that is mandatory in one system, the symbol for the similar electrode from the other system is indicated in parentheses. By appropriate restriction of the formulation of a particular electrode, it is often, but not always, possible to produce an electrode that can be classified in both systems, in which case the electrode, or its packaging, can be marked with the classification in either or both systems.

For system B only, electrode flux combinations for the single-run and two-run techniques are classified on the basis of the two-run technique.



About ISO

ISO, the International Organization for Standardization, brings global experts together to agree on the best way of doing things – for anything from making a product to managing a process. As one of the oldest non-governmental international organizations, ISO has enabled trade and cooperation between people and companies all over the world since 1946. The International Standards published by ISO serve to make lives easier, safer and better.

GROUPS