Cart (0)
  • No items in cart.
Total
$0
There is a technical issue about last added item. You can click "Report to us" button to let us know and we resolve the issue and return back to you or you can continue without last item via click to continue button.
Filters:
EDITION
to
PUBLISHER
(1)
(353)
(651)
(599)
(58)
(290)
(1042)
(728)
(2262)
(117)
(97896)
(58)
(635)
(132)
(33)
(28)
(20)
(99791)
(18)
(1)
(396)
(328)
(10763)
(7369)
(252)
(21)
(24378)
(849)
(7)
(1722)
(23)
(19)
(28)
(4)
 
(6)
(7)
(128)
(1)
(3)
(58)
(5)
(5)
(1)
(1)
(2)
(28)
(27)
(36)
(13)
(71)
(24)
(25)
(7)
(8)
(20)
(1)
(3)
(50)
(6)
(34)
CONTENT TYPE
 Act
 Admin Code
 Announcements
 Bill
 Book
 CADD File
 CAN
 CEU
 Charter
 Checklist
 City Code
 Code
 Commentary
 Comprehensive Plan
 Conference Paper
 County Code
 Course
 DHS Documents
 Document
 Errata
 Executive Regulation
 Federal Guideline
 Firm Content
 Guideline
 Handbook
 Interpretation
 Journal
 Land Use and Development
 Law
 Legislative Rule
 Local Amendment
 Local Code
 Local Document
 Local Regulation
 Local Standards
 Manual
 Model Code
 Model Standard
 Notice
 Ordinance
 Other
 Paperback
 PASS
 Periodicals
 PIN
 Plan
 Policy
 Product
 Product - Data Sheet
 Program
 Provisions
 Requirements
 Revisions
 Rules & Regulations
 Standards
 State Amendment
 State Code
 State Manual
 State Plan
 State Standards
 Statute
 Study Guide
 Supplement
 Sustainability
 Technical Bulletin
 All
  • ISO
    ISO 48-2:2018 Rubber, vulcanized or thermoplastic - Determination of hardness - Part 2: Hardness between 10 IRHD and 100 IRHD
    Edition: 2018
    $386.77
    / user per year

Content Description

This document specifies four methods for the determination of the hardness of vulcanized or thermoplastic rubbers on flat surfaces (standard-hardness methods) and four methods for the determination of the apparent hardness of curved surfaces (apparent-hardness methods). The hardness is expressed in international rubber hardness degrees (IRHD). The methods cover the hardness range from 10 IRHD to 100 IRHD.

These methods differ primarily in the diameter of the indenting ball and the magnitude of the indenting force, these being chosen to suit the particular application. The range of applicability of each method is indicated in Figure 1.

This document does not specify a method for the determination of hardness by a pocket hardness meter, which is described in ISO 48-5.

This document specifies the following four methods for the determination of standard hardness.

— Method N (normal test) is appropriate for rubbers with a hardness in the range 35 IRHD to 85 IRHD, but can also be used for hardnesses in the range 30 IRHD to 95 IRHD.

— Method H (high-hardness test) is appropriate for rubbers with a hardness in the range 85 IRHD to 100 IRHD.

— Method L (low-hardness test) is appropriate for rubbers with a hardness in the range 10 IRHD to 35 IRHD.

— Method M (microtest) is essentially a scaled-down version of the normal test method N, permitting the testing of thinner and smaller test pieces. It is appropriate for rubbers with a hardness in the range 35 IRHD to 85 IRHD, but can also be used for hardnesses in the range 30 IRHD to 95 IRHD.

NOTE 1 The value of the hardness obtained by method N within the ranges 85 IRHD to 95 IRHD and 30 IRHD to 35 IRHD might not agree precisely with that obtained using method H or method L, respectively. The difference is not normally significant for technical purposes.

NOTE 2 Because of various surface effects in the rubber and the possibility of slight surface roughness (produced, for example, by buffing), the microtest might not always give results agreeing with those obtained by the normal test.

This document also specifies four methods, CN, CH, CL and CM, for the determination of the apparent hardness of curved surfaces. These methods are modifications of methods N, H, L and M, respectively, and are used when the rubber surface tested is curved, in which case there are two possibilities:

a) the test piece or product tested is large enough for the hardness instrument to rest upon it;

b) the test piece or product tested is small enough for both the test piece and the instrument to rest upon a common support.

A variant of b) would be where the test piece rests upon the support surface of the instrument.

Apparent hardness can also be measured on non-standard flat test pieces using methods N, H, L and M.

The procedures described cannot provide for all possible shapes and dimensions of test piece, but cover some of the commonest types, such as O-rings.



The following editions for this book are also available...

About ISO

ISO, the International Organization for Standardization, brings global experts together to agree on the best way of doing things – for anything from making a product to managing a process. As one of the oldest non-governmental international organizations, ISO has enabled trade and cooperation between people and companies all over the world since 1946. The International Standards published by ISO serve to make lives easier, safer and better.

GROUPS